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In a recent paper [1], the present author introduced a hybrid means to analyze the free
vibration of dynamical systems which consist of a continuous structure combined with
various lumped attachments. Using the assumed-modes method [2] with N component
modes, the free vibration of such a combined dynamical system corresponds to the solution
of a generalized eigenvalue problem of order N×N, whose stiffness and mass matrices
consist of diagonal matrices modified by the sum of R rank one matrices, where R
correspond to the number of constraints or lumped attachments. Manipulating this
generalized eigenvalue problem, the free vibration can be calculated instead by solving a
much smaller characteristic determinant of order R×R, leading to considerable
computational advantages.

After the work was completed, reference [3] came to the attention of the author which
treats the free vibration of a rectangular plate with lumped attachments. Specifically, the
authors used the analytical and numerical combined method (ANCM) to determine the
natural frequencies of a uniform rectangular flat plate carrying any number of point masses
and grounded translational springs. Using the assumed-modes method, the eigenvalue
equation for the aforementioned constrained plate is given by (see reference [3] for detailed
derivation):

[K]h̄=v2[M]h̄, [M]= [I]+ s
R

i=1

mifif
T
i , [K]= [L]+ s

R

i=1

kifif
T
i . (1–3)

In the above expressions, [I] denotes the identity matrix, [L] corresponds to a diagonal
matrix whose ith element is given by the ith eigenvalue of the unconstrained plate, and

fi =[f1(xi , yi ), . . . , fj (xi , yi ), . . . , fN (xi , yi )]T, (4)

where fj (xi , yi ) corresponds to the jth normalized eigenfunction or component mode of
the unconstrained plate (without any lumped attachments) evaluated at (xi , yi ), the
location of the ith grounded translational spring–lumped mass attachment. The
eigenfunctions are arranged in ascending order according to the magnitudes of the
corresponding natural frequencies. Finally, note that both the stiffness and mass matrices
consist of diagonal matrices modified by the sum of R rank one matrices.

The natural frequencies of the constrained plate must satisfy the following N×N
characteristic determinant:

det ([K]−v2[M])=det 0[L]+ s
R
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where si = ki −miv
2. By rearranging equation (5), one can show that the eigenvalues, v2,

of the constrained plate are given by the zeros of the product of the following characteristic
determinants of order N×N:

det ([L]−v2[I]) det 0[I]+ s
R

i=1

si ([L]−v2[I])−1fif
T
i 1=0. (6)

After some lengthy algebra, equation (6) can be shown to be identical to

det ([L]−v2[I]) det [B]= t
N

i=1

(li −v2) det [B]=0, (7)

where the (i, j)th element of [B], of size R×R, is given by

bij = s
N

r=1

fr (xi , yi )fr (xj , yj )
lr −v2 +

1
si

d j
i , i, j=1, . . . , R. (8)

Note that each element of [B] consists of a sum of N terms. In equations (8), fr (xi , yi )
denotes the rth eigenfunction at (xi , yi ) and d j

i is the Kronecker delta. For a uniform simply
supported rectangular plate carrying any number of lumped masses and grounded
translational springs, one can compute the natural frequencies by either solving a
generalized eigenvalue problem of equation (1), of dimension N×N, or by solving for the
roots of the characteristic determinant of equation (7), of dimension R×R. For R�N,
equation (7) proves more computationally efficient to solve.

Consider a constrained rectangular plate with only a concentrated mass, m, at (xc , yc ).
Then equation (7) reduces to

t
N

i=1

(li −v2)01−mv2 s
N

i=1

f2
i (xc , yc )
li −v2 1=0. (9)

If the constrained plate is simply supported, the unconstrained modes and the
unconstrained eigenvalues are easily obtained from existing literature [4]. Then
equation (9) becomes

t
N

i=1

(li −v2)01−mv2 s
r

p=1

s
s

q=1

4(sin2 ppxc /a)(sin2 qpyc /b)
rab(p4[(p/a)2)+ (q/b)2]DE /r−v21=0, (10)

where N= r× s; a and b are the lengths of the plate in the x and y directions, respectively;
r is the mass per unit area of the plate; and DE denotes the flexural rigidity of the plate:

DE =Eh3/12(1− n2), (11)

where E is the Young’s modulus of the plate, h is the plate thickness and n denotes
Poisson’s ratio. When the lumped mass is not located at the node of any of the component
modes, the eigenvalues of the constrained and unconstrained modes of the simply
supported plate must be distinct; thus v2 $ li , and equation (10) reduces to

1−mv2 s
r

p=1

s
s

q=1

4(sin2 ppxc /a)(sin2 qpyc /b)
rab(p4[(p/a)2 + (q/b)2]DE /r−v2)

=0, (12)
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Figure 1. A uniform square simply supported plate carrying a concentrated mass m=50 kg located at
xc /a=0·25 and yc /b=0·25.

Rearranging equation (12) yields

1=
4mv2

abDE
s
r

p=1

s
s

q=1

(sin2 ppxc /a)(sin2qpyc /b)
p4[(p/a)2 + (q/b)2]−v2r/DE

. (13)

In the limit as r and s approach infinity, the exact solution of a simply supported
rectangular plate carrying a concentrated mass is recovered [5]. It should be emphasized
again that the hybrid approach requires only the eigenfunctions and eigenvalues of a
simply supported plate, which are readily obtainable. This approach leads to the exact
solution, and is much simpler than solving the problem analytically (see reference [5] for
detailed derivation).

To validate the present approach, the natural frequencies of a uniform simply supported
square plate carrying a lumped mass as shown in Figure 1 (Figure 2 of reference [3]) are
determined. The system parameters are identical to those used in reference [3] (see Table 2
of reference [3]), namely: m=50 kg, xc , yc =0·5 m, 0·5 m, a, b=2 m, 2 m, h=0·005 m,
E=2·051×1011 N/m2, r=39·25 kg/m2, n=0·3. Since the lumped mass location lies on
the nodal line of the square simply supported plate [4], equation (10) instead of (12) must
be used to calculate the natural frequencies of the constrained plate (simply supported
square plate with lumped mass) [1]. Table 1 lists the first five natural frequencies of

T 1

The first five natural frequencies of Figure 1. The system parameters are
m=50 kg, xc , yc =0·5 m, 0·5 m, a, b=2 m, 2 m, h=0·005 m,
E=2·051×1011 N/m2, r=39·25 kg/m2, n=0·3 (identical to those of
Table 2 of reference [3]). For the ANCM and the hybrid approaches, 30

modes are used.

Natural frequency ANCM [3] Hybrid [1] Exact [5]

1 31·81399 31·82478 31·82478
2 63·23190 63·31816 63·31816
3 95·41475 95·41495 95·41495
4 127·61601 127·74139 127·74139
5 180·59301 180·67666 180·67666
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Figure 1, obtained by using ANCM [3], the hybrid approach [1] and the exact formulation
[5]. Note that the third natural frequency of the constrained plate corresponds to v12 of
the unconstrained plate (the simply supported square plate without any lumped mass) [4].
For r=6, s=5, N= r× s=30, note that the hybrid approach leads to the exact solution,
while the ANCM method leads to natural frequencies which are slightly lower than the
exact results.

In brief, the hybrid approach described in reference [1] can also be used to analyze the
free vibration of a simply supported rectangular plate carrying a concentrated mass. The
approach can also be easily extended to study the free vibration of a rectangular plate with
various boundary conditions (including clamped, free and simply supports) carrying any
number of point masses and grounded translational springs.
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